Foundations of Generalized Reversible Computing
نویسنده
چکیده
Information loss from a computation implies energy dissipation due to Landauer’s Principle. Thus, increasing the amount of useful computational work that can be accomplished within a given energy budget will eventually require increasing the degree to which our computing technologies avoid information loss, i.e., are logically reversible. But the traditional definition of logical reversibility is actually more restrictive than is necessary to avoid information loss and energy dissipation due to Landauer’s Principle. As a result, the operations that have traditionally been viewed as the atomic elements of reversible logic, such as Toffoli gates, are not really the simplest primitives that one can use for the design of reversible hardware. Arguably, a complete theoretical framework for reversible computing should provide a more general, parsimonious foundation for practical engineering. To this end, we use a rigorous quantitative formulation of Landauer’s Principle to develop the theory of Generalized Reversible Computing (GRC), which precisely characterizes the minimum requirements for a computation to avoid information loss and the consequent energy dissipation, showing that a much broader range of computations are, in fact, reversible than is acknowledged by traditional reversible computing theory. This paper summarizes the foundations of GRC theory and briefly presents a few of its applications.
منابع مشابه
SIZE AND GEOMETRY OPTIMIZATION OF TRUSS STRUCTURES USING THE COMBINATION OF DNA COMPUTING ALGORITHM AND GENERALIZED CONVEX APPROXIMATION METHOD
In recent years, the optimization of truss structures has been considered due to their several applications and their simple structure and rapid analysis. DNA computing algorithm is a non-gradient-based method derived from numerical modeling of DNA-based computing performance by new computers with DNA memory known as molecular computers. DNA computing algorithm works based on collective intelli...
متن کاملFault Tolerant Reversible QCA Design using TMR and Fault Detecting by a Comparator Circuit
Quantum-dot Cellular Automata (QCA) is an emerging and promising technology that provides significant improvements over CMOS. Recently QCA has been advocated as an applicant for implementing reversible circuits. However QCA, like other Nanotechnologies, suffers from a high fault rate. The main purpose of this paper is to develop a fault tolerant model of QCA circuits by redundancy in hardware a...
متن کاملFault Tolerant Reversible QCA Design using TMR and Fault Detecting by a Comparator Circuit
Quantum-dot Cellular Automata (QCA) is an emerging and promising technology that provides significant improvements over CMOS. Recently QCA has been advocated as an applicant for implementing reversible circuits. However QCA, like other Nanotechnologies, suffers from a high fault rate. The main purpose of this paper is to develop a fault tolerant model of QCA circuits by redundancy in hardware a...
متن کاملA mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کاملReversible Term Rewriting: Foundations and Applications
Essentially, in a reversible programming language, for each forward computation step from state S to state S′, there exists a constructive and deterministic method to go backwards from state S′ to state S. Besides its theoretical interest, reversible computation is a fundamental concept which is relevant in many different areas like cellular automata, bidirectional program transformation, or qu...
متن کامل